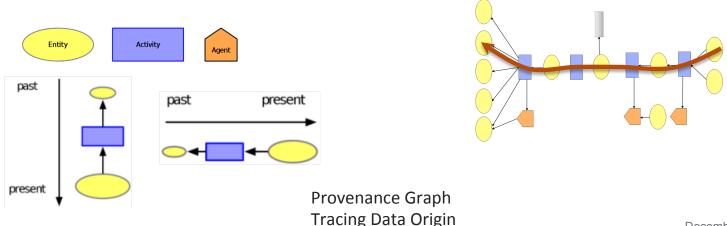


Data Provenance Hybridization Supporting Extreme-Scale Scientific Workflow Applications

ERIC STEPHAN


Pacific Northwest National Laboratory
2016 Earth System Grid Federation (ESGF) Workshop

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Provenance Definitions

- A computable and semantically meaningful historical explanation of influential factors, process flows, and data flows.
- Provenance is information about entities, activities, and people involved in producing a piece of data or thing, which can be used to form assessments about its quality, reliability or trustworthiness [W3C PROV].
- Disclosure evidence provided from the perspective of the running application.
- Observation measurements collected about the computational environment while disclosure is taking place.

Provenance at scale

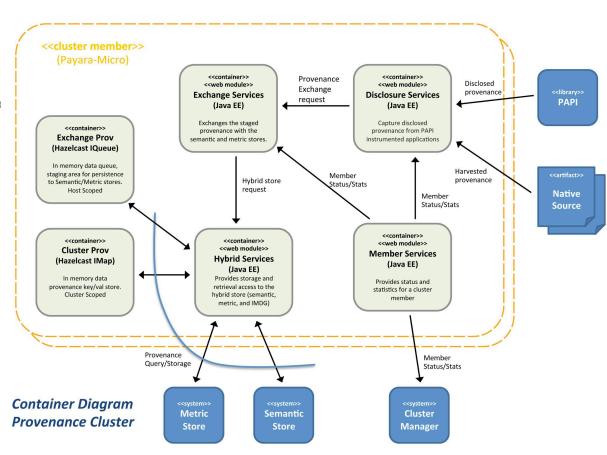
- Minimize impact, control granularity (coarse to fine) and retention of provenance
- ▶ **Retrieval**, how to retrieve, explore, and analyze large amounts of collected provenance
- Scalability, provenance collection from concurrent large-scale scientific workflows will require a scalable solution
- ▶ **Dynamic interference**, provide real-time monitoring and analysis to support runtime workflow steering
- Context, integrate system level data to extend provenance descriptions
- Provenance by Design, provenance disclosure designed for workflow domain objectives:
 - Reproducibility, Results Explanation, Performance Optimization, Anomaly Detection, Monitoring, Others...

Provenance Environment (ProvEn) Services Overview

Proudly Operated by Battelle Since 1965

ProvEn is a provenance management platform consisting of loosely coupled components supporting the disclosure, storage, and access to provenance information.

Producer API (PAPI)

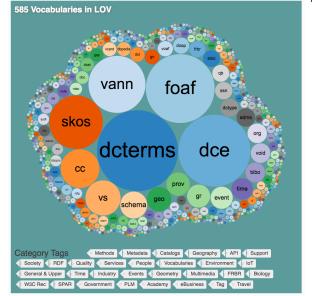

ProvEn's provenance disclosure library. Scientific workflow applications instrumented with PAP can produced and disclose their provenance data.

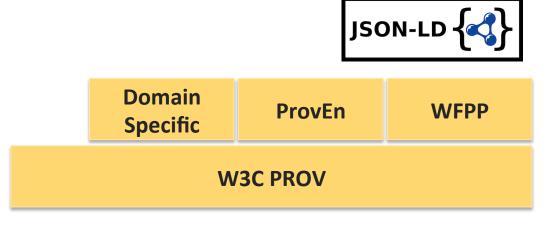
Provenance Cluster

 ProvEn's scalable approach for collecting concurrent provenance data streams from PAPI sources.

Hybrid Store

ProvEn combines system level metrics (Metric Store) with the traditional disclosed provenance (Semantic Store) to create an extended provenance view.

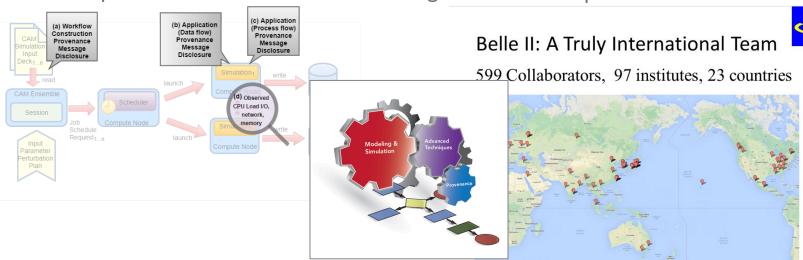


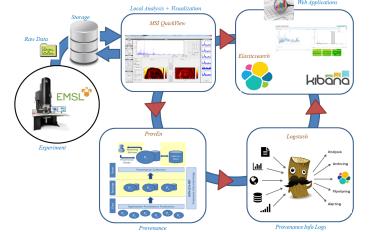


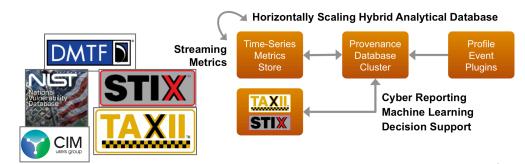
Standards-based Provenance

- ▶ **W3C PROV** data model published in 2013 defines a core data model for provenance for building representations of the entities, people and processes involved in producing a piece of data or thing in the world.
- ► Workflow Performance Provenance (WFPP) data model is an extension to PROV that will enable the empirical study of workflow performance characteristics and variability including complex source attribution.
- Provenance Environment (ProvEn) data model provides concepts specific to the ProvEn provenance management software platform.

Domain Specific Descriptive integration

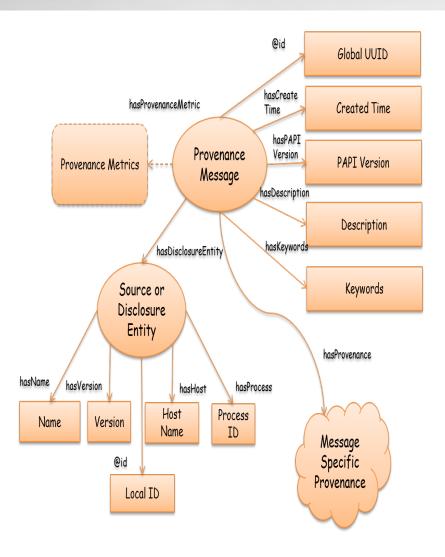





Research Focus

ACME Results Explanation and Performance Tuning Scheduler Optimization on Belle II

Reproducible Mass Spectrometry Workflows Model Federation and Message Profile Tool Chains



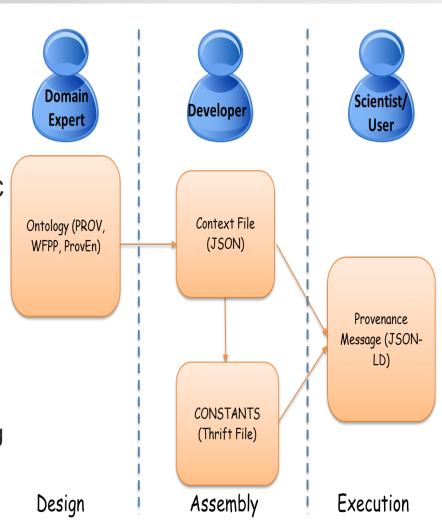
Proudly Operated by Battelle Since 1965

Provenance Message

Provenance Message

- PAPI's "unit of" provenance
- Each message is a fragment of the complete provenance graph
- Every message created uses the same structure (Header + Body)
- Provenance by design messages tailored per PAPI distribution. Ad-hoc also supported
- Messages are serialized as JSON-LD for a direct interchange to Semantic
 Store – RDF Database
- Offline messaging capability

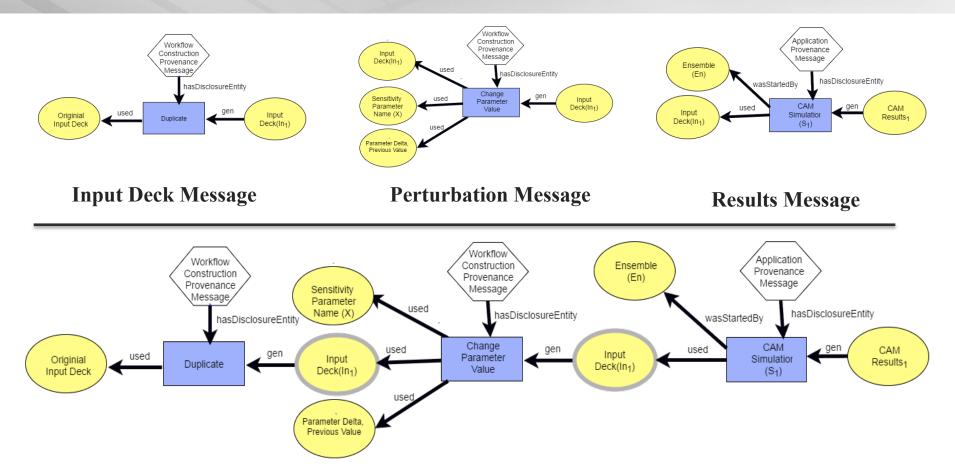
Proudly Operated by Baffelle Since 1965


Lifecycle of Provenance Message

Provenance Message Design

Involves domain expert to identify the provenance messages to support experimental design

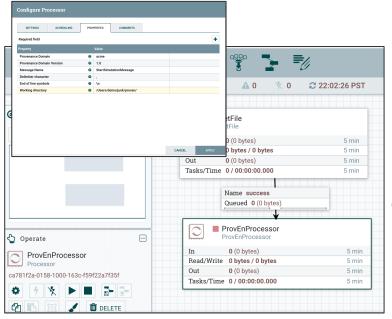
 Uses foundation ontology (e.g. W3C PROV, ProvEn) and domain ontology(WFPP)


- Assembly
 - A domain specific provenance context file is created based on the identified ontological concepts.
 Enumerated constants are generated for compile time checking
- Message Creation
 - PAPI generates provenance messages based on context file and are serialized into JSON-LD.

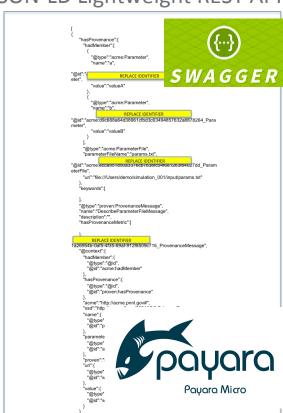
ACME - Message Disclosure and Collection

Proudly Operated by Baffelle Since 1965

When collected by ProvEn provenance message fragments are integrated into a connected provenance graph to answer the questions posed earlier. The gray outline on entity ovals indicates where messages are connected to form the complete provenance graph.

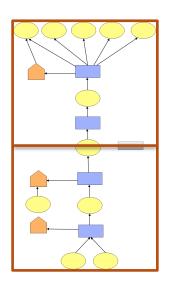

Provenance Disclosure Strategies

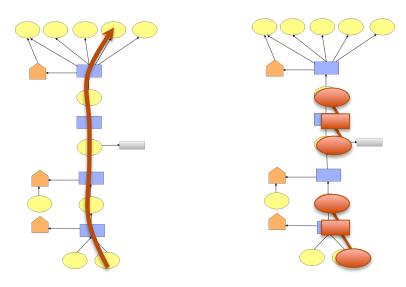
Collecting only relevant information that is used to answer direct questions.


Provenance API (PAPI) calls from standalone or distributed apps JSON-LD Lightweight REST API

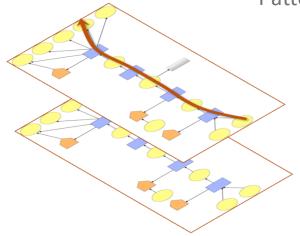
```
m.
ProvenanceMessage pm = createMessage(START_APPLICATION);
pm.sendMessage();
...
```

PAPI enabled Harvesting





Types of Querying

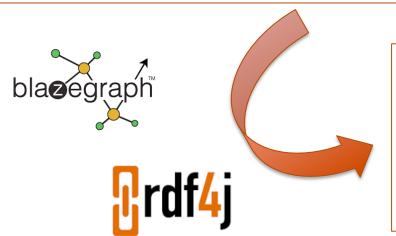

- Regular Expression searches
- Searches
 - Semantic
 - Time-series
- Tracing origin
- Detecting repeating patterns
- Semantic reasoning

Sub-graph partitioning

Tracing Data Origin Detecting Repeating Patterns in subgraphs

Domain and foundation multi-layer searches

December 7, 2016


Hybrid Store What are Provenance Metrics?

- Provenance Metrics are discrete pieces of semantic provenance (a single triple) identified in a Provenance Message, and serialized into a time-series format for storage in a registered Metric Store.
- Occurs at time of disclosure, at a minimum alignment of data is by time

acme:simulation_1 wfpp:hasStartTime "1471355953002"^^xsd:dateTime
acme:simulation 1 wfpp:hasStopTime "1471355959001"^^xsd:dataTime

timestamp	node	sensor	value	state	message_id	app_id
1471355953002				START	1	1
1471355953004	pi06	CPU1	9.062			
1471355953004	pi06	MEM1	2.464			
1471355953004	pi06	CPU2	8.057			
1471355953004	pi06	MEM2	2.597			
•••						
1471355959001				STOP	100	1
•••						

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

ESGF Questions

- How will your efforts help the ESGF community of users?
 - As an active member of standards communities we can both represent needs and notify the ESGF of trends and solutions emerging from any synergistic technological efforts.
 - ProvEn Services
 - As an analytical platform, ProvEn could be used as an integration point for provenance inter-comparison or runtime analytics.
 - As a repository, ProvEn could be hosted by those who lack a provenance solution.
 - PAPI Java client API
 - Used standalone or integrated as a client to ProvEn Services.
 - Working with ESGF to standardize what provenance analytics means for climate science and what disclosures are required to answer priority questions.

ESGF Questions

- ► What is your timeline for releasing your efforts?
 - We plan to deploy ProvEn in Docker in FY2017.
 - We are in the process of making ProvEn Services and PAPI open source (possibly Spring 2017)
 - Limited deployments could be supported as early as February.
- What standards and services need to be adopted within the environment that will allow ESGF to participate in early adoption?
 - Minimum is dedication of linux box
 - Determining provenance requirements.
- How are you funded for longevity?
 - FY2017 funding on IPPD and ACME.

Acknowledgements

- Todd Elsethagen, Bibi Raju, Malachi Schram, Matt MacDuff, Darren Kerbyson - Pacific Northwest National Laboratory
- Kerstin Kleese van Dam Brookhaven National Laboratory
- Ilkay Altintas, Alok Singh San Diego Supercomputer Center & University of California, San Diego
- Project Acknowledgements
 - Integrated End-to-end Performance Prediction and Diagnosis for Extreme Scientific Workflows (IPPD) Project. IPPD is funded by the U. S. Department of Energy Awards FWP-66406 and DEC0012630
 - Accelerated Climate Modeling for Energy (ACME) project funded by the Office of Biological and Environmental Research (BER) in the U.S. Department of Energy (DOE) Office of Science.
 - Analysis In Motion (AIM) Initiative at Pacific Northwest National Laboratory (PNNL), which is conducted under PNNL's Laboratory Directed Research and Development Program